(l, S)-extension of Linear Codes

نویسنده

  • Axel Kohnert
چکیده

We construct new linear codes with high minimum distance d. In at least 12 cases these codes improve the minimum distance of the previously known best linear codes for fixed parameters n, k. Among these new codes there is an optimal ternary [88, 8, 54]3 code. We develop an algorithm, which starts with already good codes C , i.e. codes with high minimum distance d for given length n and dimension k over the field GF (q). The algorithm is based on the new defined (l, s)−extension. This is a generalization of the wellknown method of adding a parity bit in the case of a binary linear code of odd minimum weight. (l, s)−extension tries to extend the generator matrix of C by adding l columns with the property that at least s of the l letters added to each of the codewords of minimum weight in C are different from 0. If one finds such columns the minimum distance of the extended code is d + s provided that the second smallest weight in C was ≥ d + s. The question whether such columns exist can be settled using a Diophantine system of equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c s / 07 01 11 2 v 1 [ cs . I T ] 1 7 Ja n 20 07 ( l , s ) − Extension of Linear Codes

We construct new linear codes with high minimum distance d. In at least 12 cases these codes improve the minimum distance of the previously known best linear codes for fixed parameters n, k. Among these new codes there is an optimal ternary [88, 8, 54]3 code. We develop an algorithm, which starts with already good codes C , i.e. codes with high minimum distance d for given length n and dimensio...

متن کامل

Module-Amenability on Module Extension Banach Algebras

Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...

متن کامل

On the maximality of linear codes

We show that if a linear code admits an extension, then it necessarily admits a linear extension. There are many linear codes that are known to admit no linear extensions. Our result implies that these codes are in fact maximal. We are able to characterize maximal linear (n, k, d)q-codes as complete (weighted) (n, n − d)-arcs in PG(k−1, q). At the same time our results sharply limit the possibi...

متن کامل

Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3

Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...

متن کامل

On Counting Subring-Subcodes of Free Linear Codes Over Finite Principal Ideal Rings

Let R be a finite principal ideal ring and S the Galois extension of R of degree m. For k and k, positive integers we determine the number of free S-linear codes B of length l with the property k = rankS(B) and k = rankR(B∩R). This corrects a wrong result [1, Theorem 6] which was given in the case of finite fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009